Towards Robust Cross-Domain Domain Adaptation for Part-of-Speech Tagging
نویسندگان
چکیده
We investigate the robustness of domain adaptation (DA) representations and methods across target domains using part-ofspeech (POS) tagging as a case study. We find that there is no single representation and method that works equally well for all target domains. In particular, there are large differences between target domains that are more similar to the source domain and those that are less similar.
منابع مشابه
FLORS: Fast and Simple Domain Adaptation for Part-of-Speech Tagging
We present FLORS, a new part-of-speech tagger for domain adaptation. FLORS uses robust representations that work especially well for unknown words and for known words with unseen tags. FLORS is simpler and faster than previous domain adaptation methods, yet it has significantly better accuracy than several baselines.
متن کاملEffect of Data Imbalance on Unsupervised Domain Adaptation of Part-of-Speech Tagging and Pivot Selection Strategies
Domain adaptation is the task of transforming a model trained using data from a source domain to a different target domain. In Unsupervised Domain Adaptation (UDA), we do not assume any labelled training data from the target domain. In this paper, we consider the problem of UDA in the contact of Part-of-Speech (POS). Specifically, we study the effect of data imbalance on UDA of POS, and compare...
متن کاملOnline Updating of Word Representations for Part-of-Speech Tagging
We propose online unsupervised domain adaptation (DA), which is performed incrementally as data comes in and is applicable when batch DA is not possible. In a part-of-speech (POS) tagging evaluation, we find that online unsupervised DA performs as well as batch DA.
متن کاملFast Domain Adaptation for Part of Speech Tagging for Dialogues
Part of speech tagging accuracy deteriorates severely when a tagger is used out of domain. We investigate a fast method for domain adaptation, which provides additional in-domain training data from an unannotated data set by applying POS taggers with different biases to the unannotated data set and then choosing the set of sentences on which the taggers agree. We show that we improve the accura...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013